Connectionist Decision Systems for a Visual Search Problem
|
IIZUKA ´94, Fukuoka, Japan August 1-7, 1994, Invited paper
Visual Search has been investigated by many researchers inspired by the biological fact, that the sensory elements on the mammal retina are not equably distributed. Therefore the focus of attention (the area of the retina with the highest density of sensory elements) has to be directed in a way to efficiently gather data according to certain criteria. The work discussed in this article concentrates on applying a laser range finder instead of a silicon retina. The laser range finder is maximal focused at any time, but therefore a low-resolution total-scene-image, available with camera-like devices from scratch on, cannot be used here. By adapting a couple of algorithms, the edge-scanning module steering the laser range finder is able to trace a detected edge. Based on the data scanned so far, two questions have to be answered. First: "Should the actual (edge-) scanning be interrupted in order to give another area of interest a chance of being investigated?" and second: "Where to start a new edge-scanning, after being interrupted?". These two decision-problems might be solved by a range of decision systems. The correctness of the decisions depends widely on the actual environment and the underlying rules may not be well initialized with a-priori knowledge. So we will present a version of a reinforcement decision system together with an overall scheme for efficiently controlling highly focused devices.