Part IV Conclusion & Appendix
Chapter 13 Conclusion

This section will summarize the major investigations presented in this thesis. First, the set of methods and techniques, which are presented for the first time are mentioned briefly. The achieved results (including the drawbacks) are discussed at an abstract level. Finally, a perspective is given by a short introduction of one further research line.

13.1. What was new?

The central philosophy all introduced methods are based on is the preservation of as many degrees of freedom as possible and reasonable concerning the world modelling process of a mobile robot in unknown, unreliably, or dynamic environments. Beyond the general aspect of adaptability, the question of variance in the set of behaviours of a mobile robot, dedicated to real world scenes (i.e. scenes containing unforeseeable constraints), opens up the general discussion about a reasonable relation of pre-programming and learning in mobile robots\(^1\) interacting extensively with their environments.

SPIN

The SPIN system has shown up an almost model-free method of generating stable, geometric 3-d symbols out of current working environments (\(^\text{\textasciitilde}\) chapter 7). In the course of development, some new and specific techniques were introduced and investigated – some of them even relevant outside the focus of geometric abstractions or visual steering.

The shown visual search methods are especially dedicated to highly focused devices. This field is prevailingy unexplored, due to the fact, that visual search is mainly motivated by physiological investigations concerning visual cortices (mainly in cats and monkeys), which are also focused, but always offer a possibility of gathering blurred information from immediate surroundings simultaneously. Therefore the steering methods from the literature are based on “parallel” vision systems, instead of serial sensor readings, as assumed in the SPIN system. The orders of magnitude between the realtime information bandwidth in both configurations has forced, beside other constraints, new methods, introduced in this thesis (\(^\text{\textasciitilde}\) chapter 8).

Motivated by the need of a-priori knowledge during a kind of bootstrap in the abstraction pipeline of SPIN, a new neural fuzzy decision method (SPIN-NFDS) was introduced and proven applicable in the given context, even in general terms (\(^\text{\textasciitilde}\) chapter 3).

The classification of 3-d surfaces through dynamic self-organising maps was not a completely new approach, but extends the methods given in the literature by some important features ensuring lifelong learning abilities (\(^\text{\textasciitilde}\) chapter 4).

1. also denoted animats, critters, creatures, etc.
Finally the SPIN system has introduced a complete pipeline of sub-symbolic, adaptive, geometric abstraction components, not yet investigated in this complexity (refer to references in chapter 7).

ALICE

ALICE is currently the only mobile robot (to the knowledge of the author), able to build up a dynamic, self-organized map of sensor-situations in one exploration phase (refer to chapter 4). Additionally this was performed under hard realtime constraints. Qualitative modelling for mobile robots was introduced before, but the methods are limited to off-line training, or have (for good reason) never left the simulations.

In order to show the navigation abilities that can be established based on the qualitative topologic mapping, a new, adaptive path execution process was introduced, modelling a set of phenomena (the robot’s kinematics, drifts and systematic sensor disturbances, local manoeuvres constraints, etc.) by one mapping step from the robot’s current situation to proposed actuator settings (refer to chapter 5).

ALBATROSS (communication)

The introduced realtime communication scheme for asynchronous running processors, assuring blocking free access to communication ports with constant delays, was introduced due to the need of a communication system, fulfilling hard realtime constraints (refer to chapter 5).

13.2. **What could not be shown?**

The major drawback of this thesis is the lack of a proof of practical relevance concerning the sub-symbolic geometric abstraction project SPIN. A range finder of adequate speed and precision could not be employed during experiments with the introduced methods. Therefore a steering and control mechanism for such a range finder could be investigated on the base of simulations only.

The complexities of employed algorithms in the SPIN-components allow realtime configurations in principle, i.e. the actual realtime abilities have still to be proven, including real-world implementations. But the total amount of computational power (accumulating all SPIN-components), assuming SISD computers, is very large and handicaps implementations on moving machines at the current state of the art in computer architecture.

13.3. **What has been shown?**

Assuming environments containing enough descriptive edges and a range finder with adequate features, the SPIN system has demonstrated a possibility achieving stable, geometric symbols from previously unknown environments. The decomposition into the necessary components is complete and ensures a working overall system, although the system was never tested (due to limited computational power) with all components running in parallel.

Visual steering concerning highly focused devises was investigated for the first time and could therefore not be compared to existing systems. Nevertheless, principal improvements regarding simulated environments and compared to elementary recursive edge-following could be shown.

A neural-fuzzy method, employing fuzzy rules, pre-structuring a five layer network together with standard neural adaptation methods for refinements according to the actual context, was introduced and proven a major improvement in comparison to fuzzy logic or standard connectionist methods applied individually. The comparison to existing neural-fuzzy controllers has turned out some significant new features.

The geometric classifications in order to generate stable symbolic representations could be performed ensuring some stability, generalization as well as lifelong learning abilities, and resulting in reasonable symbols. All applied algorithms (dynamic self-organizing maps respectively Adaptive Resonance Theory) have complexities allowing realtime implementations.

The ALBATROSS operating system kernel includes a communication scheme, especially adapted to the demands of asynchronous realtime transfers, and applied to a couple of mobile platforms in the meanwhile.

Finally, the ALICE project as a first step towards the idea of simple, but adaptive robots of practical relevance, has proven stable real world abilities even under extremely worse conditions (regarding drift, sensors, systematic errors, and limited computational power). The ability of realtime world modelling with
lifelong flexibility running in parallel to the robot’s self-localization is a unique feature. The generated models are of qualitative, topological character, and applicable for a wide range of tasks.

13.4. Perspectives

The number of potential new directions, continuing and completing the investigated research fields appears rather large, but in order not to become too speculative here, the author would like to limit this final section to one aspect.

The prevailing tests with the mobile platform ALICE have shown promising results with respect to real world applications, especially if constraints regarding weight, stability, and reliability have to be considered. A currently not satisfying aspect (comparing ALICE to any primitive biological creature) is the large number of performed movements. This drawback is the straight result of the applied sensor devises. On the other hand the employment of range finding sensors is not uncritical, if the elementary ALICE feature of being small and light weighted should remain untouched (as intended by the author). Additionally the “perspective-problem” (situations appearing significantly different from specific perspectives) introduces a new stage of sensor pre-processing and forces modifications in the qualitative, topologic world modelling as introduced in this thesis. Nevertheless, ALICE (respectively her younger sister) will be equipped with special range finders, where the biological plausibility as well as other ALICE assumptions will be still considered.
Bibliography

[Ackley85] Ackley David H., Hinton Geoffrey E., Sejnowski Terrence J.
A learning algorithm for Boltzmann machines

Competitive Learning Algorithms for Vector Quantization

[Ahmad94] Ahmad Subutai
Feature Densities are Required for Computing Feature Correspondences

[Ahmad91] Ahmad Subutai, Omohundro Stephen - 1.7.1991
Efficient Visual Search: A Connectionist Solution

[Ahmad90] Ahmad Subutai, Omohundro Stephen - 25.7.1990
A Network for Extracting the Locations of Point Clusters Using Selective Attention

[Aleksander89] Aleksander Igor (ed.)
Neural Computing Architectures - The design of brain-like machines

Optical Character Recognition using Artificial Neural Networks

[Alpaydin91] Alpaydin Ethem - 1.5.1991
GAL: Networks that grow when they learn and shrink when they forget

Attractor Neural Networks and Biological Reality: Associative Memory and Learning
[Amit89b]
Amit Daniel J.
Modeling brain functions - The world of attractor neural networks
Press Syndicate of the University of Cambridge (1989)
ISBN 0-521-36100-1

[Anderson87]
Anderson James A., Rosenfeld Edward (eds.)
Neurocomputing - Foundations of Research

[Anderson72]
Anderson James A.
A simple neural network generating an interactive memory

[Andlinger91]
Andlinger Paul, Reichl Ernst R. - 1.10.1991
Fuzzy-Neunet: A Non Standard Neural Network

[Asteroth92]
Asteroth Alexander, Fischer Mark Sebastian, Möller Knut, Schnepf Uwe - 16.11.1992
Tracking and Grasping of Moving Objects - A Behaviour-Based Approach
Submitted to the workshop IMYCS ‘92, 7th International Meeting of Young Computer Scientists, November 16-20, 1992, Smolenice Castle, CSFR

[Atkin88]
Atkin G.K., Bowcock J.E., Queen N.M. - 3.10.1988
Solution of a Distributed Deterministic Parallel Network using Simulated Annealing
Pattern Recognition, Vol. 22, No. 4, pp. 461-466, 1989, 0031-3203/89 $3.00+.00, Maxwell Pergamon Macmillan plc, Pattern Recognition Society

[Attneave54]
Attneave Fred - 1.3.1954
Some Information Aspects of Visual Perception
Psychology Review, Vol. 61, No. 3, 1954

[Austin92]
Austin Alan Scott - 01.02.92
Structural Level Evolution of Neural Networks
From the Proceedings of the First Annual Conference on Evolutionary Programming, San Diego California, February, 1992

[Austin89]
Austin James - 16.8.1989
ADAM: An Associative Neural Architecture for Invariant Pattern Classification

[Baffes92]
Baffes Paul T., Zelle John M.
Growing Layers of Perceptrons: Introducing the Extentron Algorithm

[Baldi88]
Neural Networks and Principal Component Analysis: Learning from Examples Without Local Minima
Neural Networks, Vol. 2, pp. 53-58, 1989

[Baloch90]
Baloch Aliaz, Waxman Allen M. - 27.11.1990
Visual Learning, Adaptive Expectations, and Behavioral Conditioning of the Mobile Robot MAVIN

[Banquet87]
Banquet Jean-Paul, Grossberg Stephen - 1.12.1987
Probing cognitive processes through the structure of event-related potentials during learning: an experimental and theoretical analysis

[Barbosa90]
Barbosa Valmir C., Lima Priscila M.V. - 1.10.1990
On the Distributed Parallel Simulation of Hopfield’s Neural Networks
Software - Practice & Experience, Vol. 20 (10), 967-983 (October 1990) 0038-0644/90/100967-17$08.50

[Barthen87a]
Barthen Jacob, Toomarian N., Protopopescu V. - 12.1.1987
Optimization of the computational load of a hypercube supercomputer onboard a mobile robot

[Barto91]
Barto Andrew G., Bradtke Steven J., Singh Satinder P. - 1.8.1991
Real-Time Learning and Control using Asynchronous Dynamic Programming

[Battiti91]
Battiti Roberto - 14.9.1991
First and Second-Order Methods for Learning: between Steepest Descent and Newton’s Method
FTP: archive.cis.ohio-state.edu | pub/neuroprose | battiti.second.ps.Z

[Bayer93]
Bayer Joachim - 01.10.93
Anwendung des Verfahrens der Learning Vector Quantization (LVQ) für eine automatische Bestecksortier-Einrichtung
Technical report - Universität Kaiserslautern, Fachbereich Informatik, AG von Puttkamer

[Bebis91]
Bebis George N., Papadourakis George M. - 1.5.1991
Object Recognition using invariant Object Boundary Representations and Neural Network Models
Pattern Recognition, Vol. 25, No. 1, pp. 25-44, 1992, 0031-3203/92 $3.00+.00, Pergamon Press plc, Pattern Recognition Society
[Becker] Becker Suzanna, Hinton Geoffrey E.
Learning to Make Coherent Predictions in Domains with Discontinuities
FTP: archive.cis.ohio-state.edu | pub/neuroprose | becker.prediction.ps.Z

[Becker93] Bengio Samy, Bengio Yoshua, Cloutier Jocelyn, Gecezi Jan - 01.08.93
Generalization of a parametric learning rule
Proceedings of the ICANN ‘93, Amsterdam, The Netherlands; FTP: archive.cis.ohio-state.edu | pub/neuroprose | bengio.general.ps

Learning a synaptic learning rule
Technical report #751; FTP: archive.cis.ohio-state.edu | pub/neuroprose | bengio.learn.ps.Z

The Never-Ending Learning

[Besl88] Besl Paul J.
Surfaces in Range Image Understanding

[Besl85] Besl Paul J., Jain Ramesh C. - 1.3.1985
Three-Dimensional Object Recognition
Computing Surveys, Vol. 17, No. 1, March 1985, ACM 0360-0300/85/0300-0075$00.00

[Bessière93] Bessière Pierre, Ahuactzin Juan-Manuel, Talbi El-Ghazali, Mazer Emmanuel
The “Ariadne’s Clew” Algorithm: Global Planning with Local Methods

MENTAL: A Virtual Machine Approach to Artificial Neural Networks Programming

[Beyer93] Beyer Uwe, Smieja Frank - 11.10.93
Learning from Examples using Reflective Exploration
FTP : archive.cis.ohio-state.edu | pub/neuroprose | beyer.explore.ps.Z

[Biederman85] Biederman Irving - 11.7.1985
Human Image Understanding: Recent Research and a Theory

[Biehl93] Biehl Michael - 18.06.93
An exactly solvable model of unsupervised learning
FTP: archive.cis.ohio-state.edu | pub/neuroprose

Image Segmentation with Neurocomputers

[Blayo91] Blayo François Demartines Pierre - 1.10.1991
Data analysis: How to compare Kohonen neural networks to other techniques?

[Bock92] Bock Peter, Klinnert Roland, Kober Rudolf, Rovner Richard M., Schmidt Hauke - 01.04.92
Gray-Scale ALIAS
IEEE Trans. on Knowledge and Data Engineering, Vol. 4, No. 2, April 1992

A Performance Evaluation of ALIAS for the Detection of Geometric Anomalies on Fractal Images

A Neural Network Implementation for Real-Time Scene Analysis

[Bottou90] Bottou Léon, Gallinari Patrick - 1.5.1990
A Framework for the Cooperation of Learning Algorithms
FTP: cheops.cis.ohio-state.edu | pub/neuroprose | bottou.cooperation.ps.Z

Uncertainty in Knowledge Bases

[Braitenberg77] Braitenberg Valentinio
On the Texture of Brains
Heidelberg Science Library, Springer Verlag, New York, Heidelberg, Berlin

[Brause91] Brause Rüdiger
Neuronale Netze: eine Einführung in die Neuroinformatik
[Brill87]
Brill Michael H., Bergeron Doreen W., Stoner William Stoner - 1.12.1987
Retinal model with adaptive contrast sensitivity and resolution

[Brooks90]
Network Based Autonomous Robot Motor Control: from Hormones to Learning

[Brooks83]
Brooks R.A.
Solving the Find-Path Problem by Good Representation of Free Space?

[Bruske93a]
Bruske Jörg, Pauli Josef, Sommer Gerald - 26.11.93
Dynamic Cell Structure learns Perfectly Topology Preserving Map
submitted to Neural Computation

[Bruske93b]
Bruske Jörg - 01.04.93
Neural Fuzzy Decision Systems
Diploma thesis - Universität Kaiserslautern, Fachbereich Informatik, AG von Puttkamer

[Buckley92]
Buckley James J.
Theory of the fuzzy controller: An introduction

[Buntine91a]
Buntine Wray L., Weigend Andreas S. - 3.7.1991
Bayesian Back-Propagation

[Buntine91b]
Buntine Wray L., Weigend Andreas S. - 3.7.1991
Calculating Second Derivatives on Feed-Forward Networks
FTP: cheops.cis.ohio-state.edu / pub/neuroprose / buntine.second.ps.Z

[Camargo90]
Camargo Francisco A. - 12.12.1990
Learning Algorithms in Neural Networks

[Cañete91]
Cañete Fernández de, Ollero J., Díaz-Fondón M. - 1.10.1991
Autonomous Controller Tuning by using a Neural Network

[Carne91]
Carne José E., Delgado Miquel, Requena Ignacio - 1.10.1991
Using Artificial Neural Networks to Aid Decision Making Processes

[Carpenter92]
Carpenter Gail A., Grossberg Stephen
Self-Organizing Cortical Networks for Distributed Hypothesis Testing and Recognition Learning

[Carpenter91a]
ARTMAP: Supervised Real-Time Learning and Classification of Nonstationary Data by a Self-Organizing Neural Network

[Carpenter91b]
ART 2-A: An Adaptive Resonance Algorithm for Rapid Category Learning and Recognition
Neural Networks, Vol. 4, pp. 493-504, 1991

[Carpenter88]
Carpenter Gail A., Grossberg Stephen - 1.3.1988
The ART of Adaptive Pattern Recognition by a Self-Organizing Neural Network
Computer, March '88, pp. 77-88, 0018-9162/88/0300-0077$01.00 (IEEE)

[Carpenter87a]
ART 2: self-organization of stable category recognition codes for analog input patterns

[Carpenter87b]
A Massively Parallel Architecture for a Self-Organizing Neural Pattern Recognition Machine

[Caudill87]
IEEE First International Conference on Neural Networks (ICON '87)
[Chalmers91a]
High-Level Perception, Representation, and Analogy: A Critique of Artificial Intelligence Methodology
CRCC Technical Report 49 - FTP: cogsci.indiana.edu | pub |

[Chalmers91b]
Chalmers David J.,
Consciousness and Cognition
FTP: cogsci.indiana.edu | pub |

[Chalmers91c]
Chalmers David J.,
Subsymbolic Computation and the Chinese Room
Closing the Gap: The Symbolic and Connectionist Paradigms in Cognitive Science (J Dinsmore, ed.);
FTP: cogsci.indiana.edu | pub |

[Chalmers90a]
Chalmers David J. - 25.7.1990
Why Fodor and Pylyshyn Were Wrong: The Simplest Refutation

[Chalmers90b]
Chalmers David J.,
Syntactic Transformations on Distributed Representations
Connection Science, Vol 2, Nos 1 & 2, 1990, pp. 53-62;
FTP: cogsci.indiana.edu | pub |

[Chalmers90c]
Chalmers David J.,
The Evolution of Learning: An Experiment in Genetic Connectionism

[Chang91]
Chang Chen-Huei, Chang Chao-Chih, Hwang Shu-Yuen - 11.11.1991
Connectionist Learning Procedure for Edge Detector

[Chen93]
Chen D., Giles C.L., Sun G.Z., Chen H.H., Lee Y.C., Goudreau M.W.
Contractive Learning of Recurrent Neural Networks
Proc. of the ICNN ’93, San Francisco, CA; FTP: external.nj.nec.com | pub/giles/papers

[Cho91]
Cho Sung-Bae, Kim Jin H. - 1.3.1991
A fast back-propagation learning method using Aitken’s Δ^2 process

[Clark90]
Clark Andy
Microcognition - Philosophy, Cognitive Science, and Parallel Distributed Processing

[Cliff93]
Cliff Dave, Harvey Inman, Husbands Philip
Incremental Evolution of Neural Networks Architectures for Adaptive Behaviour
Technical report - CSRP256, University of Sussex FTP: ftp.cogs.susx.ac.uk | pub/reports/csrp | csrp256.ps.Z

[Cliff92]
Cliff D., Husbands P., Harvey I. - 01.07.92
Evolving Visually Guided Robots

[Cliff90]
Cliff D.T. - 1.5.1990
Computational Neuroethology: A Provvisorial Manifesto
FTP: cheops.cis.ohio-state.edu | pub/neuroprose | cliff.manifesto.ps.Z

[Connell90]
Connell Jonathan H.
Minimalist Mobile Robots - A Colony-Style Architecture for an Artificial Creature

[Coolen89]
Coolen A.C.C., Kuijk F.W. - 26.5.1989
A Learning Mechanism for Invariant Pattern Recognition in Neural Networks
Neural Networks, Vol. 2, pp. 495-506, 1989

[Cowan98]
Artificial Neural Networks

[Crick91]
Crick Francis, Koch Christof - 28.1.1991
Towards a Neurobiological Theory of Consciousness

[Daugman89]
Daugman John - 19.4.1989
Non-orthogonal wavelet representations in relaxation networks: image encoding and analysis with biological visual primitives

[Davis88a]
Neural Network Models for Optical Computing
[Davis88b]
Davis Joel L., Newburgh Robert W., Wegman Edward J.
Brain Structure, Learning, and Memory
AAAS Selected Symposium 105, Published by Westview Press, Inc., 5500 Central Avenue, Boulder, Colorado

[Day91]
Day Shawn P., Davenport Michael R. - 1.8.1991
Continuous-Time Temporal Back-Propagation with Adaptable Time Delays
Submitted to: IEEE Transactions on Neural Networks; FTP: archive.cis.ohio-state.edu | pub/neuroprose | day.temporal.ps.Z

[Deussen91]
Deussen Peter - 1.4.1991
Sonderforschungsbereich 314 - Künstliche Intelligenz - Wissensbasierter Systeme
KI, 2/1991, Projekte, pp.87-92

[Dietterich]
Dietterich Thomas G., Bakiri Ghulum
Error-Correcting Output Codes: A General Method for Improving Multiclass Inductive Learning Programs
FTP: archive.cis.ohio-state.edu | pub/neuroprose | dietterich.comparison.ps.Z

[Dong91a]
Dong Dawei - 15.4.1991
Dynamic properties of neural network
FTP: hope.caltech.edu | pub/dawei | Ch*.ps, App*.ps

[Dong91b]
Dong Dawei
Dynamic properties of neural network with adapting synapses
IJCNN '91 - IJCNN, International Joint Conference on Neural Networks - Seattle; FTP: hope.caltech.edu | pub/dawei | IJCNN91.ps

[Doya89]
Doya Kenji, Yoshizawa Shuji - 18.1.1989
Adaptive Neural Oscillator using continuous-time Back-Propagation Learning

[Dron91]
Dron Lisa - 11.11.1991
An analog model of early visual processing: contour and boundary detection in the retina

[Dror94a]
Dror, Itiel E., Zagaeski Mark, Moss Cynthia F.
Three-dimensional Target Recognition via Sonar: A Neural Network Model
Running Title: Sonar Target Recognition - In Press, Neural Network

[Dror94b]
Dror Itiel E., Florer Faith L., Moss Cynthia F., Zagaeski Mark, Rios Damien
Using Sonar Neural Networks for Complex Pattern Recognition: Recognizing Faces and the Speed of a Moving Target Sonar Neural Networks / 1, Draft Version

[Eckmiller89]
Eckmiller Rolf - 19.4.1989
Neural control of intelligent robots

[Eckmiller90]
Eckmiller Rolf (ed.) - 1.6.1990
Advanced Neural Computers

[Eckmiller87]
Neural Computers

[Edelman92]
Edelman Shimon, Bülthoff Heinrich H.
Modeling human visual object recognition
Proc. Intl. Joint Conf. on Neural Networks, 1992; FTP: eris.wisdom.weizmann.ac.il | /pub

[Edelman91a]
Edelman S.
A Network model of Object Recognition in Human Vision

[Edelman91b]
Edelman Shimon
Visual Perception

[Edelman91c]
Edelman Shimon
Artificial Intelligence - An update

[Edelman91d]
Edelman Shimon, Poggio Tomaso
Artificial Intelligence - An update

[Edelman91e]
Edelman Shimon, Reisfeld Daniel, Yeshurun Yechezkel - 01.08.91
Learning to recognize faces from examples
Proc. 2nd European Conf. on Computer Vision, 1992; FTP: eris.wisdom.weizmann.ac.il | /pub

[Edlinger91]
Edlinger Thomas, von Puttkamer Ewald, Strauch Thomas - 25.06.91
An Efficient Navigation Strategy for an Autonomous Mobile Robot
[Fritzke92]
Fritzke Bernd - 11.05.92
Wachsende Zellstrukturen - ein selbstorganisierendes neuronales Netzwerkmodell
PhD Thesis, University of Erlangen-Nürnberg

[Reference]

[Fritzke91a]
Fritzke Bernd - 2.7.1991
Unsupervised clustering with Growing Cell Structures

[Fritzke91b]
Fritzke Bernd, Wilke Peter - 1.5.1991
FLEXMAP - A Neural Network for the Traveling Salesman Problem with Linear Time and Space Complexity
FTP: cheops.cis.ohio-state.edu | pub/neuroprose | fritzke.linear_tsp.ps.Z

[Fritzke91c]
Fritzke Bernd
Let It Grow - Self-Organizing Feature Maps with Problem Dependent Cell Structure
Proc. of the ICANN-91 Helsinki; FTP: cheops.cis.ohio-state.edu | pub/neuroprose | fritzke.cell_structure.ps.Z

[FuHC94]
Fu H.C., Shann J.J. - 01.04.94
A Fuzzy Neural Network for Knowledge Learning

[Garis89]
Garis H. de - 16.8.1989
“COMPO” Conceptual Clustering with Connectionist Competitive Learning

[Gasser]
Gasser Michael, Smith Linda B.
Comparison, Categorization, and Perceptual Dimensions: A Connectionist Model of the Development of the Notion of Sameness
FTP: cheops.cis.ohio-state.edu | pub/neuroprose | gasser.same.ps.Z

[Gal93]
Gat Erann, Desai Rajiv, Ivlev Robert, Loch John, Miller David P.
Behavior Control for Robotic Exploration of Planetary Surfaces
Accepted for Publication in the IEEE Journal of Robotics and Automation
Integrating Planning and Reacting in a Heterogeneous Asynchronous Architecture for Real-World Mobile Robots
Proceedings of the AAAI '92

A Subspace Approach to Invariant Pattern Recognition Using Hopfield Networks

Neural Networks and Combinatorial Optimization Problems - The Key to a Successful Mapping

On the Network-Based Emulation of Human Visual Search
Neural Networks, Vol. 4, pp. 543-564, 1991

Scale, translation, and rotation invariant orthonormalized optical/optoelectronic neural networks
APPLIED OPTICS, 10. December 1993, Vol. 32, No. 35

Learning, invariance, and generalization in high-order neural networks

Glasius, R., Komoda, A., Gielen, S. - 01.04.94
Neural network dynamics for path planning and obstacle avoidance

Learning Algorithm for the Enhanced Fuzzy Perceptron
FTP: saqqaRA.cis.ohio-state.edu | /pub/neuroprose | thgoh.fuzzy.ps.Z

Goto Yoshimasa, Stentz Anthony
The CMU System for Mobile Robot Navigation
Proceedings of the IEEE Conf. on Robotics and Automation, 1987 CH2413-3/87/0000/0099S01.00

Green David G.
Emergent Behaviour in Biological Systems
Complex Systems: From Biology to Computation, pp. 24-35, Editors: David G. Green and Terry J. Bosso-
maier, Publisher IOS Press, Amsterdam, 1993; FTP: life.anu.edu.au | pub/complex_systems/anu92/papers | green.ps

Groß H.-M., Böhme H.-J., Heinke D., Pomierski T. - 19.10.92
Steuerung parallel-sequentieller Verarbeitungsprozesse und Strukturierung dynamischer Repräsentationen

Grossberg Stephen, Somers David - 23.1.1991
Synchronized Oscillations During Cooperative Feature Linking in a Cortical Model of Visual Perception

Grossberg Stephen, Levine Daniel S. - 1.12.1987
Neural dynamics of attentionally modulated Pavlovian conditioning: blocking, interstimulus interval, and second-
ary reinforcement

Grossberg Stephen - 1.10.1987
Nonlinear Neural Networks: Principles, Mechanisms, and Architectures
Neural Networks, Vol. 1, pp. 17-61, 1988

Grossberg Stephen
Competitive Learning: From Interactive Activation to Adaptive Resonance

Grossberg S.
How does a brain build a cognitive code?

Grossberg S.
Adaptive pattern classification und universal recording: I. Parallel development and coding of neural feature detectors

Grunz Grund
- 01.03.93
Flächenvervollständigung mit einem Backpropagation-Netz
Technical report - Universität Kaiserslautern, Fachbereich Informatik, AG von Puttkamer
[GuptaL89]
A Neural Network Approach to Robust Shape Classification
Pattern Recognition, Vol. 23, No. 6, pp. 563-568, 1990, 0031-3203/90 $3.00+0.00, Pergamon Press plc, Pattern Recognition Society

[GuptaMM91]
Gupta M.M., Knopf G.K. - 11.11.1991
A neuro-vision processor for designing intelligent sensors

[GuptaP91]
Connectionist Models and Linguistic Theory: Investigations of Stress Systems in Language
FTP: archive.cis.ohio-state.edu | pub/neuroprose | gupta.stress.ps.Z

[Hammond89]
Hammond Kristian - 2.6.1989
Case-Based Reasoning

[Hart68]
Hart Peter E., Nilsson Nils J., Raphael Bertram - 01.07.68
A Formal Basis for the Heuristic Determination of Minimum Cost Paths

[Harvey93]
Harvey I., Husbands P., Cliff D. - 15.01.93
Genetic Convergence in a Species of Evolved Robot Control Architectures
Cognitive Science Research Paper: CSRP 267, The University of Sussex, School of Cognitive and Computing Sciences, Falmer, Brighton BN1 9QH, England, U.K.; A version of this paper will be presented at the Fifth International Conference on Genetic Algorithms, University of Illinois at Urbana-Champaign, 17-22 July 1993

[Harvey92]
Harvey I., Husbands P., Cliff D. - 01.07.92
Issues in Evolutionary Robotics

[Hassib92]
Hassibi Babak, Stork David G. - 1.8.1992
Second Order Derivatives for Network Pruning: Optimal Brain Surgeon

[Hebb49]
Hebb Donald O.
The Organization of Behaviour

[Hecht-Nielsen87]
Hecht-Nielsen Robert - 1.12.1987
Counterpropagation networks

[Heemskerk93a]
Heemskerk Jan N.H., Keijzer Fred A. - 1.8.1993
A Real-Time Neural Implementation of a Schema Driven Toy-Car
Proc. of the ICANN ’93, Amsterdam, August 1993

[Heemskerk93b]
Heemskerk Jan N.H., Hoekstra Jaap, Murre Jacob M.J., Kemna Leaon H.J.G., Hudson Patrick T.W.
The BSP400: A Modular Neurocomputer
to appear in Microprocessors & Microsystems

[Heger94]
Heger Matthias
Consideration of Risk in Reinforcement Learning
Revised submission to the 11th International Conference on Machine Learning (ML94) - FTP: ftp.gmd.de | /Learning/rl/papers | heger.consider-risk.ps.Z

[Heikkonen93]
Heikkonen J., Koikkalainen P., Oja E - 1.8.1993
From Situations to Actions: Motion Behavior Learning by Self-Organization
Proc. of the ICANN ’93, Amsterdam, August 1993, p. 262-267

[Hemmerling93]
Hemmerling Armin - 1.3.1993
Navigation without Perception of Coordinates and Distances

[Hertz94]
Hertz J., Krogh A., Lautrup B., Lehmann T. - 04.03.94
Non-Linear Back-propagation: Doing Back-Propagation without Derivatives of the Activation Function
FTP: archive.cis.ohio-state.edu | pub/neuroprose | hertz.nonlin.ps.Z

[Hertz91]
Hertz John, Krogh Anders, Palmer Richard
Introduction to the Theory of Neural Computation

[Hirose90]
Hirose Yoshio, Yamashita Koichi, Hijiya Shimpei - 12.6.1990
Back-Propagation Algorithm Which Variesthe Number of Hidden Units
Neural Networks, Vol. 4, pp. 61-66, 1991
[Hoff60]
Hoff Marcian E., Widrow Bernard
Adaptive switching circuits

[Hogeweg93]
Hogeweg Paulien
As large as life and twice as natural: Bioinformatics and the Artificial Life Paradigm

[Hogg91]
Hogg David W., Martin Fred, Resnick Mitchel - 5.6.1991
Braitenberg Creatures
FTP: kame.media.mit.edu | pub/el-memos | memo13.PS.Z

[Honavar90]
Honavar Vasant, Uhr Leonard
Generative Learning Structures and Processes for Generalized Connectionist Networks
FTP: cheops.cis.ohio-state.edu | pub/neuroprose | honavar.generate.ps.Z

[Hubel89]
Hubel David H.
Auge und Gehirn - Neurobiologie des Sehens
Spektrum der Wissenschaft, Heidelberg, ISBN 3-922508-92-8

[Hubel68]
Hubel D. H., Wiesel T. N.
Receptive Fields and Functional Architecture of Monkey Striate Cortex

[Hubel65]
Hubel D. H., Wiesel T. N.
Receptive Fields and Functional Architecture in Two Non-Striate Visual Areas (18 and 19) of the Cat
J. Neurophysiol. 28 (1965) pp. 229-289

[Hubel62]
Hubel D. H., Wiesel T. N.
Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex

[Hubel59]
Hubel D. H., Wiesel T. N.
Receptive Fields of Single Neurones in the Cat's Striate Cortex
J. Physiol. 148 (1959) pp. 574-591

[Hummel89]
Hummel John E., Biederman Irving, Gerhardstein Peter C., Hilton H. John
From Image Edges to Geons: A Connectionist Approach

[Husband93]
Husbands Philip, Harvey Inman, Cliff Dave
Analysing Recurrent Dynamical Networks Evolved for Robot Control
[Hutchison87]
Integration of Distributed and Symbolic Knowledge Representations
Caudill Maureen, Butler Charles (eds.) - IEEE First International Conference on Neural Networks (ICONN ‘87) - IEEE Catalog Number 87TH0191-7

[Hwang93]
Hwang Jenq-Neng, You Shih-Shien, Lay Shyh-Rong, Jou I-Chang
What’s Wrong with A Cascaded Correlation Learning Network: A Projection Pursuit Learning Perspective
FTP: cheops.cis.ohio-state.edu | pub/neuroprose | hwang.cclppl.ps.Z

[Intrator91]
Intrator Nathan, Gold Josh I., Bülthoff Heinrich H., Edelman Shimon
3D Object Recognition using Unsupervised Feature Extraction

[Jagota90]
Jagota Arun - 1.3.1990
A new Hopfield-style network for content-addressable memories

[James92]
James Mark R. - 15.1.1992
Design of Low-cost, Real-time Simulation Systems for Large Neural Networks
FTP: archive.cis.ohio-state.edu | pub/neuroprose | james.nnsim.ps.Z

[James1890]
James William
Association

[Jang92a]
Jang Jyh-Shing R.
ANFIS: Adaptive-Network-Based Fuzzy Inference System

[Jang92b]
Jang Jyh-Shing R.
Self-Learning Fuzzy Controllers Based on Temporal Back Propagation
submitted to IEEE Transactions on Systems, Man and Cybernetics, 1992

[Jervis92]
Pole Balancing on a Real Rig using a Reinforcement Learning Controller

[Johnson90]
Johnson Kenneth - 1.6.1990
Adaptive Resonance Structures in Hierarchical Receptive Field Pattern Recognition Machines

[Judd90]
Judd Stephen J.
Neural Network Design and the Complexity of Learning

[Kadirkamanathan92]
Kadirkamanathan Visakan, Niranjan Mahesan - 13.10.1992
A Function Estimation Approach to Sequential Learning With Neural Networks

[Kanada89]
Intelligent Autonomous Systems

[Kanerva88]
Kanerva Pentti
Sparse Distributed Memory

[Kasabov93]
Kasabov N.K.
Learning Fuzzy Rules through Neural Networks

[Kehagias91a]
Kehagias Athanasios - 4.3.1991
Stochastic Recurrent Networks Training by the Local Backward-Forward Algorithm
FTP: archive.cis.ohio-state.edu | pub/neuroprose | kehagias.srn2.ps.Z

[Kehagias91b]
Kehagias Athanasios - 4.3.1991
Stochastic Recurrent Networks: Prediction and Classification of Time Series
FTP: archive.cis.ohio-state.edu | pub/neuroprose | kehagias.srn1.ps.Z

[Keller92]
Keller James M., Yager Ronald R., Tabani Hossein
Neural Network Implementation of Fuzzy Logic
Fuzzy Sets and Systems 45 (1992) 1-12, North Holland 0165-0114/92/$05.00, Elsevier Science Publishers B.V

[Kemke91]
Kemke Christel - 1.6.1991
Die Darstellung von ungenauem Wissen in taxonomischen Wissensbasen
[Kemke88]
Kemke Christel - 1.11.1988
Der neurere Konnektionismus
Informatik Spektrum (1988) 11: 143-162 (Springer Verlag)

[Kender98]
Kender John R., Allen Peter K., Boul Touarens E., Ibrahim Hussein A.H.
Image Understanding and Robotic Research at Columbia University

[Kennedy94]
Kennedy Geoffrey J.
Elementary Structures in Entity-Relationship Diagrams
Computer and Information Science, University of Otago, Dunedin, New Zealand

[Kersten87]
Kersten Daniel, O’Toole Alice J., Sereno Margaret E., Knill David C., Anderson James A. - 1.12.1987
Associative learning of scene parameters from images

[Keuchel94]
Keuchel Herman - 01.12.94
Klassifikation von 3-d Objekten auf der Basis der Adaptive Resonance Theory (Modelle 2 und 2-A)
Diploma-thesis; Computer Science Department; University of Kaiserslautern; Germany; 12/94

[Keuchel92]
Keuchel Herman - 01.07.92
Klassifikation von Flächen durch Neurrale Netzwerke mit problemadaptiver Zellstruktur
Technical report - Universität Kaiserslautern, Fachbereich Informatik, AG von Puttkamer

[Kinder93]
Kinder Margit, Brauer Wilfried - 01.06.93
Classification of Trajectories – Extracting Invariants with a Neural Network
Neural Networks 6/93 - FTP: archive.cis.ohio-state.edu | /pub/neuroprose | kinder.extracting_invariants.ps.Z

[Klapper93]
Klapper Edmund - 25.02.93
Der Generalisierungsbaum zur stabilen Klassifikation von Oberflächen mit einem Unsupervised Competitive Neural Network
Diploma thesis - Universität Kaiserslautern, Fachbereich Informatik, AG von Puttkamer

[Klopf90]
Klopf A. Harry, Morgan James S. - 1.6.1990
The Role of Tone in Natural Intelligence: Implications for Natural Networks and Artificial Intelligence Research

[Knierien91a]
Knierien Thomas
Sensordateninterpretation und Weltmodellierung für die Navigation eines autonom mobilen Roboters in unbekannter Umgebung – Realisiert durch das Verfahren 3rd-WM
PhD thesis; Computer Science Department; University of Kaiserslautern; Germany; 1/91

[Knierien91b]
Knierien Thomas
Autonome Mobile Roboter - Sensordateninterpretation und Weltmodellierung zur Navigation in unbekannter Umgebung
Reihe Informatik, Band 80, Böhling K.H., Kulisch U., Maurer H. (eds), BI Wissenschaftsverlag Mannheim / Wien / Zürich

[Koch]
Koch Christof, Schuster Heinz
A Simple Network Showing Burst Synchronization without Frequency-Locking
FTP: archive.cis.ohio-state.edu | pub/neuroprose | koch.syncron.ps.Z

[Kohonen91]
LVQ_PAK - The Learning Vector Quantisation Program Package (Version 1.0)

[Kohonen90]
Kohonen Teuvo - 1.6.1990
Statistical Pattern Recognition Revisited

[Kohonen89]
Kohonen Teuvo - 16.8.1989
On the significance of internal representations in neural networks

[Kohonen88]
Kohonen Teuvo - 1.3.1988
The “Neural” Phonetic Typewriter
Computer, March ’88, pp. 11-22, 0018-9162/88/0300-0011$01.00 (IEEE)

[Kohonen87a]
Kohonen Teuvo - 1.12.1987
Adaptive, associative, and self-organizing functions in neural computing

[Kohonen87b]
Kohonen Teuvo - 28.8.1987
The Role of Adaptive and Associative Circuits in Future Computer Design
References

[Kohonen84]
Kohonen Teuvo
Self-Organization and Associative Memory

[Kohonen82]
Kohonen Teuvo
Self-Organized Formation of Topologically Correct Feature Maps
Biological Cybernetics, Volume 43, pp. 59-69 (1982), Springer-Verlag 0340-1200/82/0043/0059/$02.20

[Kohonen72]
Kohonen Teuvo
Correlation matrix memories

[Koikkalainen90]
Koikkalainen Pasi, Oja Erkki - 17.6.1990
Self-Organizing Hierarchical Feature Maps

[Koivunen91]
Koivunen Visa, Pietikäinen Matti - 11.11.1991
Improving the robustness of edge and region-based range image segmentation

[Konishi93]
Konishi Masakazu - 01.04.93
Listening with two ears
Scientific American April 1993

[Kopetz87]
Kopetz H., Ochsenreiter W. - 01.10.87
Interval Measurements in Distributed Real Time Systems

[Kosko92]
Kosko Bart
Neural Networks and Fuzzy Systems - A Dynamical Systems Approach to Machine Intelligence
Prentice-Hall International Inc., 1992

[Kosko87a]
Kosko Bart - 1.12.1987
Adaptive bidirectional associative memories

[Kosko87b]
Kosko Bart - 24.6.1987
Adaptive Inference in Fuzzy Knowledge Networks
Caudill Maureen, Butler Charles (eds.) - IEEE First International Conference on Neural Networks (ICONN '87) - IEEE Catalog Number 87TH0191-7

[Krishnapuram91]
Krishnapuram Raghu, Frigui Hichem, Nasraoui Olfa
New fuzzy shell clustering algorithms for boundary detection and pattern recognition

[Kröse94]
Kröse Ben J. A., Eecen Marc
A self-organizing representation of sensor space for mobile robot navigation
Faculty of Mathematics and Computer Science, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

[Kruse91]
Kruse Rudolf, Nauck Detlef, Klawonn Frank
Reasoning with Mass Distributions
FTP: ftp.tu-bs.de | pub/local/papers | kru-se.ua91.ps

[Kuan85]
Kuan D., J.C. Zamiska, Brooks R.A.
Natural Decomposition of Free Space for Path Planning
IEEE International Conference on Robotics and Automation, St. Louis, Missouri, 1985, pp. 168-173

[Kuipers88]
Kuipers Benjamin J., Byun Yung-Tai
A Robust, Qualitative Method for Robot Spatial Learning
Proceedings of the AAAI 1988

[Kuipers87]
Kuipers Benjamin J., Byun Yung-Tai - 01.08.87
A Qualitative Approach to Robot Exploration and Map-Learning
AAAI - Workshop on spacial reasoning and multi-sensor fusion, Oct. 1987

[Kuipers85]
Kuipers Benjamin - 01.12.85
The Map-Learning Critter
Technical report TR-85-33 December 1985, AI-85-17, Department of Computer Science, University of Texas at Austin, Austin, Texas 78712

[Kurz93]
Kurz A. - 18.4.1993
Building Maps based on the Learned Classification of Ultrasonic Range Data
Intelligent Autonomous Vehicles (IAV) '93, International workshop, University of Southhampton, Hampshire, United Kingdom, 18-21 April '93, pp. 193-198

[Kurz91]
Kurz Andreas, Wiedemann Bernhard, Steinmann Bärbel - 11.11.1991
Lernende Klassifikation von Ultraschall-Distanzmessungen durch selbstorganisierende Merkmalskarten und Aufbau einer Umweltrepräsentation zu Navigationszwecken
The Performance of the Neocognitron with Various S-Cell and C-Cell Transfer Functions
FTP: archive.cis.ohio-state.edu | pub/neuroprose

[Lozano-Pérez83] Lozano-Pérez T.
Spatial Planning: A Configuration Space Approach

[Lu91] Lu Si Wei, Wong Andrew K.C. - 1.6.1991
Recognition and Locating Partially Occluded Objects by Hypergraph Representation

Recognizing Chinese Characters through Interactive Activation and Competition
Pattern Recognition, Vol. 23, No. 12, pp. 1301-1312, 1990, 0031-3203/90 $3.00+.00, Pergamon Press plc, Pattern Recognition Society

Hierarchical Self-Organising Networks

[Maass94] Maass Wolfgang
Perspectives of Current Research about the Complexity of Learning on Neural Nets

Characteristics of Connectionist Knowledge Representations

Gabor Representations of Spatiotemporal Visual Images
Technical report CS-91-144; FTP: archive.cis.ohio-state.edu | pub/neuroprose | maclennan.gabor.ps.Z

[Maes92] Maes Pattie
Behaviour-based Artificial Intelligence
Proceedings of the second international conf. on the simulation of adaptive behaviour “From animals to animats”, Honolulu, Cambridge MA, MIT Press, 1992

[Maes90] Maes Pattie, Brooks Rodney A.
Learning to Coordinate Behaviors

[Mahoney92] Mahoney J. Jeffrey, Mooney Raymond J.
Combining Symbolic and Neural Learning to Revise Probabilistic Theories
MLW-92; FTP: cs.utexas.edu | pub/mooney/papers | mlw92-integrated.ps.Z

Die Silicium-Netzhaut
Spektrum der Wissenschaft, Juni 1991

[Mahowald88] Mahowald M. A., Mead Carver
Silicon Retina

Goal and Architecture of Neural Computers

Pattern Recognition by Labeled Graph Matching

[Malsburg73] Malsburg Christoph von der
Self-organization of orientation sensitive cells in the striate cortex

New Developments in Neural Computing

[Manolache93] Manolache Florin, Edelman Shimon
Generation of Natural-Looking 3D Shapes by Simulated Evolution
Weizmann Institute CS-TR 93-13, 1993; FTP: eris.wisdom.weizmann.ac.il / pub

Adaptive Perceptual Pattern Recognition By Self-organizing Neural Networks: Context, Uncertainty, Multiplicity, And Scale
FTP : archive.cis.ohio-state.edu | pub/neuroprose | marshall.context.ps.Z
[Marshall93b]
Marshall Jonathan A., Alley Richard K. - 01.10.93
A Self-organizing Neural Network That Learns To Detect And Represent Visual Depth From Occlusion Events

[Marshall91a]
Marshall Jonathan A. - 01.07.91
Challenges Of Vision Theory: Self-organization Of Neural Mechanisms For Stable Steering Of Object-grouping Data In Visual Motion Perception

[Marshall91b]
Challenges of vision theory: Self-organization of neural mechanisms for stable steering of object-grouping data in visual motion perception

[Martin93]
Martin Kevin E., Marshall Jonathan A.
Unsmearing Visual Motion: Development Of Long-range Horizontal Intrinsic Connections

[Mason92]
Mason J.S., Andrews E.C.J.
Dissection of Perceptron Structures in Speech and Speaker Recognition

[Mataric92]
Mataric Maja J. - 01.06.92
Integration of Representation Into Goal-Driven Behavior-Based Robots

[Mataric90]
Mataric Maja J.
Environment Learning using a Distributed Representation
IEEE Robotics and Automation 1990

[Mauduit92]
Mauduit Nicolas, Duranton Marc, Gobert Jean, Sirat Jacques-Ariel - 1.3.1992
Lneuro 1.0: a piece of hardware LEGO for building neural network systems
To appear in IEEE Neural Network special issue on hardware; FTP: archive.cis.ohio-state.edu | pub/neuroprose | mauduit.lneuro.ps.Z

[McCord-Nelson91]
McCord-Nelson Marilyn, Illingworth W.T.
A Practical Guide to Neural Nets

[McClelland87]
McClelland James L., Rumelhart David E. - 1.10.1987
Explorations in Parallel Distributed Processing - A Handbook of Models, Programs and Exercises

[McCulloch47]
McCulloch Warren S., Pitts Walter
A logical calculus of the ideas immanent in nervous activity

[Mézard89]
Mézard Merc - 1.2.1989
Learning algorithms in neural networks: recent results

[McMillan91]
McMillan Clayton, Mozer Michael C., Smolensky Paul
The Connectionist Game: Rule Extraction and Refinement in a Neural Network
FTP: archive.cis.ohio-state.edu | pub/neuroprose | mcmillan.csg.ps.Z

[Mellink85]
Mellink Hans, Buffart Hans - 14.11.1985
Abstract Code Network as a Model of Perceptual Memory
Pattern Recognition, Vol. 20, No. 1, pp. 143-151, 1987, 0031-3203/87 $3.00+.00, Pergamon Journals Ltd., Pattern Recognition Society

[Ménard89]
Ménard Merc - 1.2.1989
Learning algorithms in neural networks: recent results

[Miikkulainen90]
Miikkulainen Risto - 1.3.1990
A Distributed Feature Map Model of the Lexicon

[Milán] Millán José del R., Torras Carme
Efficient Reinforcement Learning of Navigation Strategies in an Autonomous Robot
Institute for systems Engineering and Informatics, European Commission, Joint Research Centre, TP 361. 21020 Ispra (VA). ITALY

[Minsky86]
Minsky Marvin - 1.1.1986
The Society of Mind
[Minsky69] Minsky Marvin, Papert Seymour
Perceptrons

[Mitchell93a] Mitchell Melanie, Forrest Stephanie - 01.11.93
Genetic Algorithms and Artificial Life
Santa Fe Institute Working Paper 93-11-072, to appear in Artificial Life

[Mitchell93b] Mitchell Melanie, Crutchfeld James P., Hraber Peter T. - 01.06.93
Dynamics, Computation, and the "Edge of Chaos": A Re-Examination

[Möller94] Möller Ralf, Groß Horst-Michael
Perception through Anticipation
Proc. of the International Conference “From Perception to Action”, 1994, Lausanne, Switzerland

[Möller93] Möller Ralf, Groß Horst-Michael
Detection of Cincidences and Generation of Hypotheses - a Proposal for an Elementary Cortical Function
Proc. of the International Conference on Artificial Neural Networks (ICANN ‘93), pp. 67-70, Springer 1993

A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning
PB-339 (Preprint); FTP: archive.cis.ohio-state.edu | pub/neuroprose | moller.conjugate-gradient.ps.Z

A Cortical Network Model for Early Vision Processing

Learning of Visual Prototypes for Autonomous Systems

[Moore88] Moore Barbara
ART I and Pattern Clustering
Connectionist Models (Summer School) - Pittsburg ‘88 - Eds. Touretzky, Hinton, Sejnowski - pp. 174-185

Silicon Implementations of Neural Networks

[Murtagh93] Murtagh Fionn, Hernández-Pajares Manuel
The Kohonen Self-Organizing Map Method: An Assessment
European Space Agency, Sapce Telescope - European Coordinating Facility, European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching, Germany

A VLSI Architecture for Implementing Neural Networks with on-chip Backpropagation Learning
Neural Networks for Vision, Speech and Natural Language Linggard R., Myers D.J., Nightingale C. (eds.), Chapman & Hall, 2-6 Boundary Row, London SE1 8HN

[Neal91] Neal Radford M. - 1.6.1991
Bayesian Mixtre Modeling by Monte Carlo Simulation

Robot Navigation by Light
Research paper - Robotics Laboratory at the Laboratory for Cognitive Neuroscience, Department of Psychology, University of Edinburgh - to presented at the European Conf. on Artificial Life (ECAL) ’93

[Nehmzow92a] Nehmzow Ulrich, Smithers, McGonigle Brendan - 1.8.1992
Increasing Behavioural Repertoire in a Mobile Robot

[Nehmzow92b] Nehmzow Ulrich
Experiments in Competence Acquisition for Autonomous Mobile Robots
Ph.D. Thesis - University of Edinburgh 1992

Using motor actions for location recognition

Steps towards intelligent robots

Really useful Robots
[Neumann58]
Neumann John von
The Computer and the Brain

[Newton91]
Newton Scott C., Mitra S. - 11.11.1991
Application of an Adaptive Fuzzy System to Clustering and Pattern Recognition

[Nguyen88]
Nguyen Dziem D., James S.J.Lee - 6.12.1988
A New LMS-Based Algorithm for Rapid Adaptive Classification in Dynamic Environments
Neural Networks, Vol. 2, pp. 215-228, 1989

[Niemann90]
Niemann Heinrich
Pattern Analysis and Understanding
Springer-Verlag Berlin Heidelberg 1990

[Nieters]
Nieters Hans
Neural Networks as Predicate Transition Systems
FTP: gmdzi.gmd.de | pub/gmd | nieters.-petri.neural.ps.Z

[Nölke94]
Nölke Franz-Josef - 01.04.94
Selective Attention Strategien zur Vervollständigung teilweise vorgegebener Oberflächen im Umweltmodell eines AMR
Diploma-thesis; Computer Science Department; University of Kaiserslautern; Germany; 4/94

[Nölke92]
Nölke Franz-Josef - 01.10.92
Das Blackboard Kommunikationsschema unter Albatross
Technical report - Universität Kaiserslautern, Fachbereich Informatik, AG von Puttkamer

[Palm90]
Palm Günther - 1.6.1990
Local Learning Rules and Sparse Coding in Neural Networks

[Palm87]
Palm Günther - 28.8.1987
On the Asymptotic Information Storage Capacity of Neural Networks

[Palm82]
Palm Günther
Neural Assemblies

[Parkkinnen91]
Parkkinnen Jussi, Cupta M., Knopf George, Hallikainen Jarno, Jääskeläinen Timo - 11.11.1991
A model for Spatial and Chromatic Vision

[Patrick89]
The Outcome Advisor®
Pattern Recognition, Vol. 23, No. 12, pp. 1427-1439, 1990, 0031-3203/90 $3.00+.00, Pergamon Press plc, Pattern Recognition Society

[Pawlicki89]
Pawlicki Ted
NORA: Neural-network Object Recognition Architecture

[Pearlmutter93]
Pearlmutter Barak A. - 04.06.93
Fast Exact Multiplication by the Hessian
To appear in Neural Computation 1993

[Pearlmutter91]
Pearlmutter Barak
Gradient Descent: Second-Order Momentum and Saturating Error
FTP: JAMES.PSYCH.YALE.EDU | pub/bap/asymp | nips91.PS.Z

[Pearlmutter90]
Pearlmutter Barak A. - 1.12.1990
Dynamic Recurrent Neural Networks
CMU-CS-90-196; FTP: cheops.cis.ohio-state.edu | pub/neuroprose | pearlmutter.dynets.ps.Z

[Pendrith94]
Pendrith Mark - 30.08.94
On Reinforcement Learning of Control Actions in Noisy and Non-Markovian Domains
UNSW-CSE-TR-9410, 30 August 1994; School of Computer Science and Engineering, The University of New South Wales, Sydney 2052 Australia

[Perlovsky90]
Perlovsky Leonid I., McManus Margaret M. - 4.6.1990
Maximum Likelihood Neural Networks for Sensor Fusion and Adaptive Classification
Neural Networks, Vol. 4, pp. 89-102, 1991

[Peukert94]
Peukert Rolf - 01.10.94
Echtzeitfähige Kommunikation in einem Multiprozenssorsystem
Diploma-thesis 10/94, Computer Science Department, University of Kaiserslautern, Germany

[Peukert91]
Peukert Rolf - 01.08.91
Peripherietreiber für das Betriebssystem ALBATROSS
Technical report; Computer Science Department; University of Kaiserslautern; Germany; 8/91
On the Acquisition of Object Concepts from Sensory Data

[Plaut91] Plaut David C. - 1.9.1991
Connectionist Neuropsychology: The Breakdown and Recovery of Behaviour in Lesioned Attractor Networks
TR CMU-CS-91-185; FTP: archive.cis.ohio-state.edu
plaut.thesis-abstract.ps.Z

On Information Theory and Unsupervised Neural Networks
plumbley_tr78.ps.Z

[Plutowski91] Plutowski Mark, White Halbert - 1.2.1991
Active selection of training examples for network learning in noisless environments
Technical report Nº CS91-180; FTP: archive.cis.ohio-state.edu
plutowski.active.ps.Z

[Poggio90] Poggio Tomaso, Edelman Shimon
A Network that Learns to Recognize 3D Objects

[Pollack89] Pollack Jordan B.
Recursive Distributed Representations
FTP: cheops.cis.ohio-state.edu
pollack.neuroma.ps.Z

[Pollack88a] Pollack Jordan B.
FTP: archive.cis.ohio-state.edu
pollack.perceptrons.ps.Z

[Pollack88b] Pollack Jordan B.
Implications of Recursive Distributed Representations
Proceeding NIPS '88; FTP: cheops.cis.ohio-state.edu
pollack.nips88.ps.Z

[Prüß94] Prüß Andreas
Explorations-Strategien zur qualitativen, topologischen Umweltmodellierung
Diploma-thesis; Computer Science Department; University of Kaiserslautern; Germany; 1/95

[Prescott94b] Prescott Tony J. - 01.08.94
Spatial Learning and Representation in Animals

[Prescott94c] Prescott Tony J., Mayhew John E. W.
Adaptive local navigation
Technical report, Artificial Intelligence and Vision Research Unit, Sheffield University, Sheffield S10 2TN, United Kingdom

[Prescott94d] Prescott Tony J., Mayhew John E. W.
Obstacle Avoidance through Reinforcement Learning

Building Long-range Cognitive Maps using Local Landmarks

[Prüß95] Prüß Andreas
Konnektionismus (Eine Einführung)
Script for a lecture at the University Kaiserslautern (1991)

[Plaut91] Plaut David C. - 1.9.1991
Connectionist Neuropsychology: The Breakdown and Recovery of Behaviour in Lesioned Attractor Networks
TR CMU-CS-91-185; FTP: archive.cis.ohio-state.edu
plaut.thesis-abstract.ps.Z

On Information Theory and Unsupervised Neural Networks
plumbley_tr78.ps.Z

[Prüß94] Prüß Andreas - 01.08.94
ALICE
Technical report; Computer Science Department; University of Kaiserslautern; Germany; 8/94

Neural Networks for Speech Pattern Classification

[Richter91] Richter Michael M.
Konnektionismus (Eine Einführung)
Script for a lecture at the University Kaiserslautern (1991)

[Riedmiller94] Riedmiller Martin - 01.05.94
Advanced Supervised Learning in Multi-layer Perceptrons - From Backpropagation to Adaptive Learning Algorithms
FTP: i11s16.ira.uka.de
riedmiller.cs94.ps.Z

[Ring91] Ring Mark - 1.6.1991
Incremental Development of Complex Behaviours through Automatic Construction of Sensory-motor Hierarchies
Proceedings of the Eighth International Workshop on Machine Learning; FTP: cheops.cis.ohio-state.edu
ring.ml91.ps.Z
[Rummery94]
Rummery G. A., Niranjan M. - 01.09.94
On-Line Q-Learning using Connectionist Systems
CUED/F-INFENG/TR 166, September 1994; FTP: svr-ftp.eng.cam.ac.uk \ reports \ rummery_tr166.ps.Z

[Ryan87]
Dynamic control of an artificial neural system: the property inheritance network

[Rybak91]
The model of a neural network visual preprocessor
Neurocomputing 4 (1992) 93-102, Elsevier, 0925-2312/92/$05.00

[Sa91]
Sa Virginia de, Ballard Dana - 1.11.1991
Top-down Teaching Enables Non-trivial Clustering via Competitive Learning
Technical report 402; FTP: archive.cis.ohio-state.edu \ pub \ neuroprose \ dina.top_down.ps.Z

[Sabiwalsky92]
Sabiwalsky Dirk - 01.08.92
Monitor
Technical report; Computer Science Department; University of Kaiserslautern; Germany; 8/92

[Schäfer93]
Schäfer Matthias - 01.05.93
Dynamische Generierung eines dreidimensionalen Umweltmodells unter Verwendung eines Laser-Entfernungsensors
Diploma thesis - Universität Kaiserslautern, Fachbereich Informatik, AG von Puttkamer

[Scheller94]
Scheller Gabriele - 15.02.94
Pattern Classification with Adaptive Distance Measures
Report FKI-188-94 from Institut für Informatik TU München D 80290 München - FTP: archive.cis.ohio-state.edu \ pub \ neuroprose \ scheller.adaptive.ps.Z

[Schiffer94]
Schiffers J., Kobér R. - 01.03.94
Ein auf Repräsentantenausbildung basierendes Klassifikationsverfahren für akustische Sensordaten
Internal report FAW-B-94002, FAW Ulm, Helmholtzstraße 16, 89081 Ulm

[Schiffmann92b]
Schiffmann W., Joost M., Werner R.
Optimization of the Backpropagation Algorithm for Training Multilayer Perceptrons
Technical report 16/1992, University of Koblenz, Institute of Physics; FTP: archive.cis.ohio-state.edu \ pub \ neuroprose \ schiff.bp_speedup.ps

[Schmidhuber91]
Schmidhuber Jürgen - 18.12.1991
Learning Factorial Codes by Predictability Minimization
compact version of TR CU-CS-565-91; FTP: archive.cis.ohio-state.edu \ pub \ neuroprose \ schmidhuber.factorial.ps.Z

[Schmitt93]
Schmitt Oliver - 01.10.93
Entwurf und Implementierung der Benutzeroberfläche eines Systems zur automatisierten Klassifikation von Tafelbesteck
Technical report - Universität Kaiserslautern, Fachbereich Informatik, AG von Puttkamer

[Schoenberger92]
Schoenberger Frank - 2.5.1992
Fukushima’s Neocognitron: An Implementation
FTP: tamsun.tamu.edu \ pub \ neocognitron.Z.tar (report.ps)

[Schölkopf94]
Schölkopf Bernhard, Mallot Hanspeter A. - 01.11.94
View-based cognitive mapping and path planning

[Schwarze92]
Schwarze H., Hertz J. - 6.3.1992
Generalization in a Large Committee Machine
Technical report - The Niels Bohr Institute and Nordita

[Scott91]
Scott Gary M., Shavlik Jude W., Ray W. Harmon - 3.10.1991
Refining PID Controllers using Neural Networks
Submitted (Sep. 1991) to Neural Computation

[Seelen90]
Seelen W. von, Mallot H.A. - 1.6.1990
Exploration of a natural environment

[Seelen87]
Seelen Werner von, Mallot Hanspeter A. - 28.8.1987
Parallelism and Redundancy in Neural Networks

[Sejnowski86]
Sejnowski Terrence J., Rosenberg Charles R.
NETtalk: a parallel network that learns to read aloud
[Takagi85]
Takagi Tomohiro, Sugeno Michio - 01.02.85
Fuzzy Identification of Systems and Its Applications to Modeling and Control

[Takeuchi88]
Takeuchi Tomoyoshi, Nagai Yutaka, Enomoto Nobuyoshi
Fuzzy Control of a Mobile Robot for Obstacle Avoidance

[Tani94a]
Tani Jun - 10.06.94
Model-Based Learning for Mobile Robot Navigation from a Dynamical System’s Perspective
Submitted to IEEE SCM special issue on robot learning (SCSL-TR-94-019)

[Tani94b]
Tani Jun, Fukumura Naohiro
Embedding Task-Based Behavior into Internal Sensory-Based Attractor Dynamics in Navigation of a Mobile Robot
Presented to IROS ’94, Munich, Germany, September 12-16, 1994

[Tani93]
Tani Jun, Fukumura Naohiro - 01.10.93
Learning Goal-Directed Sensory-Based Navigation of a Mobile Robot

[Tarassenko89]
Neural Network Architectures for Associative Memory

[Taylor92]
Theory and Applications of Neural Networks
Proceedings of the First British Neural Network Society Meeting, London

[Taylor89]
New Developments in Neural Computing

[Tebuckhorst92]
Tebuckhorst Richard - 02.07.92
Der CommunicationController unter Albatross
Technical report - Universität Kaiserslautern, Fachbereich Informatik, AG von Puttkamer

[Thompson80]
Thompson Richard F., Hicks Leslie H., Shvyrkov V.B. (eds.)
Neural Mechanisms of Goal-Directed Behaviour and Learning

[Thrun94a]
Thrun Sebastian B.
A Lifelong Perspective for Mobile Robot Control
Universität Bonn, Institut für Informatik III, Römerstraße 164, 53117 Bonn, Germany

[Thrun94b]
Thrun Sebastian B., Mitchell Tom M. - 23.10.94
Learning one more Thing
FTP: reports.adm.cs.cmu.edu | 1994 | CMU-CS-94-184.ps

[Thrun94c]
Thrun Sebastian B. - 01.10.94
An Approach to Learning Robot Navigation

[Thrun93a]
Thrun Sebastian B., Mitchell Tom M. - 01.07.93
Lifelong robot learning

[Thrun93b]
Thrun Sebastian B. - 28.04.93
Exploration and model Building in Mobile Robot Domains

[Thrun92a]
Thrun Sebastian B. - 15.01.92
Efficient Exploration In Reinforcement Learning

[Thrun92b]
Thrun Sebastian B. - 15.01.92
The Role of Exploration in Learning Control
to appear in Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches, David A. White and Donald A. Sofge (eds.), van Nostrand Reinhold, Florence, Kentucky 41022; FTP: archive.cis.ohio-state.edu | pub/neuroprose | thrun.comparison.ps

[Thrun91a]
Thrun Sebastian B. et al - 01.12.91
The MONK’s Problems: A Performance Comparison of Different Learning Algorithms
Carnegie-Mellon University, CMU-CS-91-197, December 1991; FTP: archive.cis.ohio-state.edu | pub/neuroprose | thrun.comparison.ps

[Thrun91b]
Thrun Sebastian, Smieja Frank
A General Feed-Forward Algorithm for Gradient Descent in Connectionist Networks
FTP: gmdzi.gmd.de | pub/gmd | thrun.grad-desc.ps.Z
[Thrun90]
Thrun Sebastian, Möller Knut, Linden Alexander
Planning with an Adaptive World Model
San Mateo, CA: Morgan Kaufmann; FTP: gmdzi.gmd.de | pub/gmd | thrun.nips90.ps.Z

[Tóth94]
Tóth Gábor J., Kovács Szabolcs, Lőrincz András - 18.08.94
Genetic Algorithm with Adaptive Alphabet
Department of Physicals, Institute of Isotopes, The Hungarian Academy of Sciences, Budapest,
P.O.Box 77, Hungary H-1525

[Touretzky94]
Touretzky, David S, Wan Hank S., Redish A. David
Neural Representation of Space in Rats and Robots

[Touretzky89]
Touretzky David, Hinton Geoffrey, Sejnowski Terrence
Connectionist Models (Summer School)

[Towell93]
Towell Geoffrey G., Shavlik Jude W. - 1.5.1993
Knowledge-Based Artificial Neural Networks
Artificial Intelligence 5/93; FTP: ftp.cs.wisc.edu | .../shavlik/...

[Towell92]
Towell Geoffrey G., Shavlik Jude W. - 01.11.92
Extracting Refined Rules from Knowledge-Based Neural Networks
Machine Learning 11/92; FTP: ftp.cs.wisc.edu | .../shavlik/...

[Trundt94]
Trundt Jörg - 01.06.94
Generalisierung und Vervollständigung von Flächen mit Hilfe von Backpropagation-trainierten Neuronalen Netzen
Diploma thesis; Computer Science Department; Universität Kaiserslautern; Germany; 6/94

[Verdenik91]
Verdenik Ivan - 1.6.1991
Machine learning in uncertainty

[Vogelgesang92]
Vogelgesang Volker G., Jakob Wilfried, Stratmanns Erwin - 11.10.1992
Teilsysteme für autonome Operationen in halbstrukturiert er Umgebung
Internal report, Kernforschungszentrum Karlsruhe

[WagnerK93]
Wagner Martin - 01.11.93
Klassifikation von Clustern durch neuronale Netzwerke mit problemadaptiver Zellstruktur
Technical report - Universität Kaiserslautern, Fachbereich Informatik, AG von Puttkamer

[Wassermann89]
Wassermann Philip D.
Neural Computing - Theory and Practice

[Webb93]
Webb Brandyn Jerad
Fusion-Reflection (Self-Supervised Learning)
FTP: archive.cis.ohio-state.edu | pub/neuroprose | webb.turf.ps

[Wei94]
Weiβ Gerhard, Wetzler Christopher, von Puttkamer Ewald
Keeping Track of Position and Orientation of Moving Indoor Systems by Correlation of Range-Finder Scans
IEEE International Conference on Intelligent Robots and Systems '94 (IROS '94), September 12-16, 1994, Munich, Germany

[WeissY93]
Weiss Yair, Edelman Shimon
Representation with receptive fields: gearing up for recognition
Weizmann Institute CS-TR 93-09, 1993; FTP: eris.wisdom.weizmann.ac.il | /pub

[Wetzler91]
Wetzler Christopher - 01.11.91
Entwicklung und Implementierung des multitaskingfähigen Echtzeit-Netzwerk-Betriebssystemkernes Albatross
Diploma thesis - Universität Kaiserslautern, Fachbereich Informatik, AG von Puttkamer

[White91]
Competitive Hebbian Learning
FTP: cheops.cis.ohio-state.edu | pub/neuroprose | white.comp-hebb.ps.Z Proc. of the IJCNN-91 Seattle

[Williams92]
Williams Ronald J. - 1.5.1992
Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning
Machine Learning, Vol 8, 229-256 (1992)

[Willshaw76]
Willshaw D.J., Malsburg Christoph v.d. - 12.9.1976
How patterned neural connections can be set up by self-organization

[WilsonF90]
Wilson F. W.
The Animat Path to AI

[WilsonM]
Wilson Matthew A., Bhallo Upinder S., Uhley John D., Bower James M.
GENESIS: A System for simulating neural networks
FTP: imag.imag.fr | archive/neural/genesis | genesis | nips.ps.Z
[Wong90]
Wong K.Y.M., Sherrington David - 1.6.1990
The maximum storage capacity in Boolean associative memories

[Wörgötter90]
Wörgötter Florentin, Niebur Ernst, Koch Christof - 1.6.1990
Modeling Visual Cortex: Hidden Anisothrophic in an Isometric Inhibitory Connection Scheme

[Würtz92]
Würtz Rolf P. - 1.4.1992
Gesichtserkennung mit dynamischen neuronalen Netzen
Spektrum der Wissenschaft, April 1992, pp. 18-22

[Xie91]
Xie Yun, Jabri Marwan A.
Training Algorithms for Limited Precision Feedforward Neural Networks

[Xie90]
Xie Yun, Jabri Marwan A.
Analysis of the Effects of Quantization in Multi-Layer Neural Networks Using Statistical Model
FTP: archive.cis.ohio-state.edu | pub/neuroprose | yun.quant.ps.Z

[Yamauchi94]
Yamauchi Brian, Beer Randall
Integrating Reactive Behaviour, Sequential Behaviour, and Learning Using Dynamical Neural Networks
submitted to the Third International Conference on Simulation of Adaptive Behaviour - FTP: yuggoth.ces.cwru.edu | /pub/agents/yamauchi | seqlearn*

[Yamauchi93]
Yamauchi Brian, Beer Randall
Sequential Behaviour and Learning in Evolved Dynamical Neural Networks

[Yang91]
Yang Jihoon, Honovar Vasant - 1.7.1991
Experiments with the Cascade-Correlation Algorithm
Technical report #91-16; FTP: cheops.cis.ohio-state.edu | pub/neuroprose | yang.cascor.ps.Z

[Yeung88]
Yeung Dit-Yan - 17.6.1988
Supervised Learning of Action Probabilities in Associative Reinforcement Learning

[Yu90a]
Yu Yeong-Ho, Simmons Robert F. - 1.3.1990
Extra Output Biased Learning
AI 90-128, to appear in the Proceedings of the International Joint Conference on Neural Networks 1990;

[Yu90b]
Yu Yeong-Ho, Simmons Robert F. - 1.3.1990
Descending Epsilon in Back-Propagation: A Technique for Better Generalization
AI 90-130, to appear in the Proceedings of the International Joint Conference on Neural Networks 1990;

[Zadeh77]
Zadeh L.A. - 1.6.1977
Fuzzy Sets as a Basis for a Theory of Possibility

[Zadeh75]
Zadeh L.A.
The concept of a linguistic variable and its application to approximate reasoning I, II, III

[Zadeh72]
Zadeh L.A.
A rationale for fuzzy control

[Zadeh71a]
Zadeh L.A.
Toward a theory of fuzzy systems

[Zadeh71b]
Zadeh L.A.
Similarity relations and fuzzy orderings

[Zadeh68]
Zadeh L.A.
Fuzzy Algorithm
Informat. Control, vol. 12, pp.94-102, 1968

[Zadeh65]
Zadeh L.A.
Fuzzy Sets
Informat. Control, vol. 8, pp.338-353, 1965

[Zeidenberg91]
Zeidenberg Matthew - 1.10.1991
Implementing Spatial Relations in Neural Nets: Figure/Ground and Containment

[Zeidenberg89]
Zeidenberg Matthew
Neural Network Models in Artificial Intelligence
References

[Zemel89]
Zemel Richard S., Mozer Mihael C., Hinton Geoffrey E.
TRAFFIC: A Model of Object Recognition based on Transformations of Feature Instances

[Zemel]
Zemel Richard S., Hinton Geoffrey E.
Discovering Viewpoint-Invariant Relationships that Characterize Objects
FTP: cheops.cis.ohio-state.edu/pub/neuroprose/zemel.unsup-recog.ps.Z

[Zhou91]
Zhou Lei - 1.2.1991
Speaker-Independent Neural Network Pitch Tracker with Telephone Bandwidth Speech for Computer Speech Recognition
Master of Science-Thesis at the Oregon Graduate Institute - FTP: cse.ogi.edu/pub/techreports

[Zimmer95a]
Zimmer Uwe R.
Self-Localization in Dynamic Environments
submitted for publication

[Zimmer95b]
Zimmer Uwe R.
Robust World-Modelling and Navigation in a Real World
submitted for publication

[Zimmer94a]
Zimmer Uwe R. - 01.04.94
Connectionist Decision Systems for a Visual Search Problem
Proc. of the IIZUKA ’94, Fukuoka, Japan, August 1-7, 1994, Invited paper

[Zimmer94b]
Zimmer Uwe R., Fischer Cornelia, Puttkamer Ewald von - 01.04.94
Navigation on Topologic Feature-Maps
Proc. of the IIZUKA ’94, Fukuoka, Japan, August 1-7, 1994

[Zimmer94c]
Zimmer Uwe R., Puttkamer Ewald von - 01.03.94
Realtime-learning on an Autonomous Mobile Robot with Neural Networks
Proc. of the Euromicro ’94 Realtime Workshop, Västerås (Västerås), Sweden, June 15-17, 1994

[Zimmer94d]
Zimmer Uwe R., Puttkamer Ewald von - 01.03.94
Comparing Environment-Learning Strategies on an Autonomous Mobile Robot

[Zimmer93a]
Bruske Jörg, Puttkamer Ewald von, Zimmer Uwe R. - 01.12.93
SPIN-NFDS Learning and Preset Knowledge for Surface Fusion - A Neural Fuzzy Decision System -
Proc. of the ANZIIS ’93, Perth, Western Australia, December 1-3, 1993

[Zimmer93b]
Keuchel Herman, Puttkamer Ewald von, Zimmer Uwe R. - 01.08.93
SPIN - Learning and Forgetting Surface Classifications with Dynamic Neural Networks
Proc. of the ICANN ’93, Amsterdam, The Netherlands, August 1993

[Zimmer92]
Puttkamer Ewald von, Wetzler Christopher, Zimmer Uwe R. - 01.06.92
ALBATROSS - The Communication Scheme as a Key to Fulfil Hard Real-Time Contraints
Proc. of the Euromicro ’92 Realtime Workshop, Athens, Greece, June 3-5, 1992

[Zimmer91]
Puttkamer Ewald von, Zimmer Uwe R. - 01.03.91
ALBATROSS - An Operating-System under hard Real-time-Contraints
Real-Time Magazine, Diepenbeemd 5, 1650 Beersel, Belgium, Vol 5, Nr. 3, 91 / 3, ISSN 1018-0303

[Zuse]
Zuse Konrad
Faust, Mephistopheles and Computer
Numerics

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-d reality</td>
<td>60</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>A*-algorithm</td>
<td>32, 45</td>
</tr>
<tr>
<td>Abstraction pipeline</td>
<td>60</td>
</tr>
<tr>
<td>Actuators</td>
<td>28</td>
</tr>
<tr>
<td>Adaptability</td>
<td>58</td>
</tr>
<tr>
<td>Adaptation phase</td>
<td>28</td>
</tr>
<tr>
<td>Adaptive Resonance Theory</td>
<td>64, 97</td>
</tr>
<tr>
<td>Adaptive surface completion</td>
<td>69</td>
</tr>
<tr>
<td>ALBATROSS</td>
<td>30, 107</td>
</tr>
<tr>
<td>Algebraic product</td>
<td>75</td>
</tr>
<tr>
<td>Algebraic sum</td>
<td>76</td>
</tr>
<tr>
<td>ALICE</td>
<td></td>
</tr>
<tr>
<td>Alternating learning sets</td>
<td>103</td>
</tr>
<tr>
<td>Animals</td>
<td>17</td>
</tr>
<tr>
<td>Application phase</td>
<td>28</td>
</tr>
<tr>
<td>Approximate reasoning</td>
<td>77</td>
</tr>
<tr>
<td>Area-of-interest generator</td>
<td>66</td>
</tr>
<tr>
<td>Arithmetic rule</td>
<td>77</td>
</tr>
<tr>
<td>ART 2</td>
<td>63, 97</td>
</tr>
<tr>
<td>ART 2-A</td>
<td>97</td>
</tr>
<tr>
<td>ARTMAP</td>
<td>97</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behaviour-based</td>
<td>31</td>
</tr>
<tr>
<td>Behaviour-based robots</td>
<td>17</td>
</tr>
<tr>
<td>Biomimetic cognitive science</td>
<td>17</td>
</tr>
<tr>
<td>Blackboard communication</td>
<td>114</td>
</tr>
<tr>
<td>Bounded product</td>
<td>75</td>
</tr>
<tr>
<td>Bounded sum</td>
<td>76</td>
</tr>
<tr>
<td>Broadcast</td>
<td>114</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cautious removal</td>
<td>93</td>
</tr>
<tr>
<td>Centre of area</td>
<td>81, 86</td>
</tr>
<tr>
<td>Centre of gravity</td>
<td>86</td>
</tr>
<tr>
<td>Classification</td>
<td>60</td>
</tr>
<tr>
<td>Classification accuracy</td>
<td>94</td>
</tr>
<tr>
<td>Classification error</td>
<td>35</td>
</tr>
<tr>
<td>Client-server model</td>
<td>114</td>
</tr>
<tr>
<td>CoA</td>
<td>81</td>
</tr>
<tr>
<td>Collision-free</td>
<td>108</td>
</tr>
<tr>
<td>Communication controller</td>
<td>111</td>
</tr>
<tr>
<td>Communication system</td>
<td>111</td>
</tr>
<tr>
<td>Comparative cognitive science</td>
<td>17</td>
</tr>
<tr>
<td>Competitive clustering</td>
<td>97</td>
</tr>
<tr>
<td>Completion</td>
<td>60</td>
</tr>
<tr>
<td>Computational effort</td>
<td>38</td>
</tr>
<tr>
<td>Computational neuroethology</td>
<td>17</td>
</tr>
<tr>
<td>Connectionist methods</td>
<td>18</td>
</tr>
<tr>
<td>Consistency</td>
<td>39</td>
</tr>
<tr>
<td>Consistency checker</td>
<td>60</td>
</tr>
<tr>
<td>Convergence</td>
<td>99</td>
</tr>
<tr>
<td>Convex cluster model</td>
<td>60</td>
</tr>
<tr>
<td>Correlation</td>
<td>36, 41</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclic transfer</td>
<td>112</td>
</tr>
<tr>
<td>Dead-reckoning</td>
<td>27</td>
</tr>
<tr>
<td>Defuzzification</td>
<td>81, 86</td>
</tr>
<tr>
<td>Distribution preserving</td>
<td>92</td>
</tr>
<tr>
<td>Disturbance module</td>
<td>66</td>
</tr>
<tr>
<td>Drastic product</td>
<td>75</td>
</tr>
<tr>
<td>Drastic sum</td>
<td>76</td>
</tr>
<tr>
<td>Drift error</td>
<td>28</td>
</tr>
<tr>
<td>Dual-ported RAM</td>
<td>108</td>
</tr>
<tr>
<td>Dynamic environment</td>
<td>41</td>
</tr>
<tr>
<td>Dynamic self-organizing map</td>
<td>66</td>
</tr>
<tr>
<td>Edge scanner</td>
<td>66</td>
</tr>
<tr>
<td>Edge-surface detector</td>
<td>59</td>
</tr>
<tr>
<td>Efficient visual search</td>
<td>65</td>
</tr>
<tr>
<td>Epoch backpropagation</td>
<td>88</td>
</tr>
<tr>
<td>Error feedback</td>
<td>58</td>
</tr>
<tr>
<td>Error tolerance</td>
<td>28</td>
</tr>
<tr>
<td>Evolutionary robotics</td>
<td>17</td>
</tr>
<tr>
<td>Execution control</td>
<td>114</td>
</tr>
<tr>
<td>Expansion function</td>
<td>45</td>
</tr>
<tr>
<td>Exploration</td>
<td>32, 51</td>
</tr>
<tr>
<td>Extended propositional calculus</td>
<td>77</td>
</tr>
<tr>
<td>F</td>
<td>L</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FDS</td>
<td>Laser range finder</td>
</tr>
<tr>
<td>Flooding</td>
<td>Learning performance</td>
</tr>
<tr>
<td>Flow control</td>
<td>Learning phase</td>
</tr>
<tr>
<td>Focus of attention</td>
<td>Light sensor</td>
</tr>
<tr>
<td>Focus of attention manager</td>
<td>Limited adaptation</td>
</tr>
<tr>
<td>Freeform surface</td>
<td>Limited growing</td>
</tr>
<tr>
<td>Frequency coding</td>
<td>Linguistic input</td>
</tr>
<tr>
<td>Fuzzy conjunction</td>
<td>Linguistic output</td>
</tr>
<tr>
<td>Fuzzy Decision System</td>
<td>Linguistic rules</td>
</tr>
<tr>
<td>Fuzzy disjunction</td>
<td>Linguistic values</td>
</tr>
<tr>
<td>Fuzzy implication</td>
<td>Linguistic variable</td>
</tr>
<tr>
<td>Fuzzy Logic</td>
<td>Local correlation</td>
</tr>
<tr>
<td>Fuzzy number</td>
<td>Local exploration</td>
</tr>
<tr>
<td>Fuzzy set</td>
<td>Local navigator</td>
</tr>
<tr>
<td>Fuzzy singleton</td>
<td>Locking-free</td>
</tr>
<tr>
<td>Fuzzyfication</td>
<td>108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAL</td>
<td>Material implication</td>
</tr>
<tr>
<td>Gaussian function</td>
<td>Maxmin rule</td>
</tr>
<tr>
<td>Generalization</td>
<td>Mean of maximum</td>
</tr>
<tr>
<td>Generalization trees</td>
<td>Membership function</td>
</tr>
<tr>
<td>Generalized modus ponens</td>
<td>Memory domain</td>
</tr>
<tr>
<td>Generalized modus tollens</td>
<td>Metric world modelling</td>
</tr>
<tr>
<td>Global drift</td>
<td>Minimalist mobile robots</td>
</tr>
<tr>
<td>Global exploration</td>
<td>Mini-operation rule</td>
</tr>
<tr>
<td>Global navigator</td>
<td>MISO</td>
</tr>
<tr>
<td>Global time</td>
<td>MLBP</td>
</tr>
<tr>
<td>Goal-driven behaviour-based robots</td>
<td>MOBOT</td>
</tr>
<tr>
<td>GPS</td>
<td>MoM</td>
</tr>
<tr>
<td>Grow-and-learn</td>
<td>Momentum</td>
</tr>
<tr>
<td>Growing</td>
<td>Multi-layer-backpropagation</td>
</tr>
<tr>
<td>Growing cell structures</td>
<td>Multi-layer-backpropagation network</td>
</tr>
<tr>
<td>34</td>
<td>114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard realtime</td>
<td>NARA</td>
</tr>
<tr>
<td>Hill climbing</td>
<td>Navigation</td>
</tr>
<tr>
<td>Hyper-sphere</td>
<td>Navigation layers</td>
</tr>
<tr>
<td>94</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing learning sets</td>
<td>Off-line backpropagation</td>
</tr>
<tr>
<td>Incremental learning</td>
<td>On-line backpropagation</td>
</tr>
<tr>
<td>Inference engine</td>
<td>Output term</td>
</tr>
<tr>
<td>Input term</td>
<td>88</td>
</tr>
<tr>
<td>Instincts</td>
<td>88</td>
</tr>
<tr>
<td>Intersection</td>
<td>88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematics</td>
<td>Parallel search</td>
</tr>
<tr>
<td>28</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning phase</td>
<td>Radial basis function</td>
</tr>
<tr>
<td>Light sensor</td>
<td>Radial basis function network</td>
</tr>
<tr>
<td>Limiting adaptation</td>
<td>rbf</td>
</tr>
<tr>
<td>Limited growing</td>
<td>Really useful robots</td>
</tr>
<tr>
<td>Linguistic input</td>
<td>Realtime</td>
</tr>
<tr>
<td>Linguistic output</td>
<td>Realtime communication</td>
</tr>
<tr>
<td>Linguistic rules</td>
<td>Reflective behaviour</td>
</tr>
<tr>
<td>Linguistic values</td>
<td>Reflexes</td>
</tr>
<tr>
<td>Linguistic variable</td>
<td>Reinforcement learning</td>
</tr>
<tr>
<td>Local correlation</td>
<td>Restlessness generator</td>
</tr>
<tr>
<td>Local exploration</td>
<td>Remote procedure call</td>
</tr>
<tr>
<td>Local navigator</td>
<td>Retracing</td>
</tr>
<tr>
<td>Locking-free</td>
<td>Rule base</td>
</tr>
<tr>
<td>108</td>
<td>79, 85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material implication</td>
<td>Self organizing maps</td>
</tr>
<tr>
<td>Maxmin rule</td>
<td>Self-localization</td>
</tr>
<tr>
<td>Mean of maximum</td>
<td>Self-organizing map</td>
</tr>
<tr>
<td>Membership function</td>
<td>Semaphore</td>
</tr>
<tr>
<td>Memory domain</td>
<td>Semi-hard realtime</td>
</tr>
<tr>
<td>Metric world modelling</td>
<td>Sensor requirements</td>
</tr>
<tr>
<td>Minimalist mobile robots</td>
<td>Sensor weights</td>
</tr>
<tr>
<td>Mini-operation rule</td>
<td>Sensors</td>
</tr>
<tr>
<td>MISO</td>
<td>Sentence connectives</td>
</tr>
<tr>
<td>MLBP</td>
<td>Shrinking</td>
</tr>
<tr>
<td>MOBOT</td>
<td>Sigmoid function</td>
</tr>
<tr>
<td>MoM</td>
<td>Simulated animals</td>
</tr>
<tr>
<td>Momentum</td>
<td>85</td>
</tr>
<tr>
<td>Multi-layer-backpropagation</td>
<td>17</td>
</tr>
<tr>
<td>Multi-layer-backpropagation network</td>
<td>34</td>
</tr>
<tr>
<td>Mutual exclusion</td>
<td>108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>QT-models</td>
<td>34</td>
</tr>
<tr>
<td>Qualitative modelling</td>
<td>33</td>
</tr>
<tr>
<td>Qualitative topological model</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial basis function</td>
<td>Self organizing maps</td>
</tr>
<tr>
<td>Radial basis function network</td>
<td>Self-localization</td>
</tr>
<tr>
<td>rbf</td>
<td>Self-organizing map</td>
</tr>
<tr>
<td>Really useful robots</td>
<td>Semaphore</td>
</tr>
<tr>
<td>Realtime</td>
<td>Semi-hard realtime</td>
</tr>
<tr>
<td>Realtime communication</td>
<td>Sensor requirements</td>
</tr>
<tr>
<td>Reflective behaviour</td>
<td>Sensor weights</td>
</tr>
<tr>
<td>Reflexes</td>
<td>Sensors</td>
</tr>
<tr>
<td>Reinforcement learning</td>
<td>Sentence connectives</td>
</tr>
<tr>
<td>Restlessness generator</td>
<td>Shrinking</td>
</tr>
<tr>
<td>Remote procedure call</td>
<td>Sigmoid function</td>
</tr>
<tr>
<td>Retracing</td>
<td>Simulated animals</td>
</tr>
<tr>
<td>Rule base</td>
<td>85</td>
</tr>
<tr>
<td>Rule extraction</td>
<td>84</td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Simulation</td>
<td>30</td>
</tr>
<tr>
<td>Situation</td>
<td>34</td>
</tr>
<tr>
<td>Soft realtime</td>
<td>108</td>
</tr>
<tr>
<td>SPIN</td>
<td>57</td>
</tr>
<tr>
<td>SPIN-NFDS</td>
<td>85</td>
</tr>
<tr>
<td>Spontaneous insertion</td>
<td>36</td>
</tr>
<tr>
<td>Stability</td>
<td>38</td>
</tr>
<tr>
<td>Static environment</td>
<td>41</td>
</tr>
<tr>
<td>Statistical insertion</td>
<td>36</td>
</tr>
<tr>
<td>Steepest gradient</td>
<td>46</td>
</tr>
<tr>
<td>Stochastic backpropagation</td>
<td>88</td>
</tr>
<tr>
<td>Stochastic movements</td>
<td>53</td>
</tr>
<tr>
<td>Subsumption architecture</td>
<td>54</td>
</tr>
<tr>
<td>Sup-bounded-product operator</td>
<td>78</td>
</tr>
<tr>
<td>Sup-min operator</td>
<td>78</td>
</tr>
<tr>
<td>Sup-product operator</td>
<td>78</td>
</tr>
<tr>
<td>Sup-star composition</td>
<td>76</td>
</tr>
<tr>
<td>Surface classification</td>
<td>63, 91</td>
</tr>
<tr>
<td>Surface fragment</td>
<td>73</td>
</tr>
<tr>
<td>Surface fusion</td>
<td>63, 73</td>
</tr>
<tr>
<td>Surface model</td>
<td>60</td>
</tr>
<tr>
<td>Surface-cluster</td>
<td>97</td>
</tr>
<tr>
<td>Surface-cluster classification</td>
<td>63, 97</td>
</tr>
<tr>
<td>Task-based behaviour</td>
<td>17</td>
</tr>
<tr>
<td>Timeliness</td>
<td>57</td>
</tr>
<tr>
<td>Time-rigid transfer</td>
<td>113</td>
</tr>
<tr>
<td>Topological neighbour</td>
<td>35</td>
</tr>
<tr>
<td>Topological world modelling</td>
<td>34</td>
</tr>
<tr>
<td>Topology preserving</td>
<td>92</td>
</tr>
<tr>
<td>Topology preserving</td>
<td>92</td>
</tr>
<tr>
<td>Transfer synchronization</td>
<td>112</td>
</tr>
<tr>
<td>Transient transfer</td>
<td>112</td>
</tr>
<tr>
<td>Triangular co-norms</td>
<td>76</td>
</tr>
<tr>
<td>Triangular norms</td>
<td>75</td>
</tr>
<tr>
<td>Union</td>
<td>76</td>
</tr>
<tr>
<td>Unsupervised clustering</td>
<td>91</td>
</tr>
<tr>
<td>Unsupervised learning</td>
<td>58</td>
</tr>
<tr>
<td>Visual search</td>
<td>60, 63, 65</td>
</tr>
<tr>
<td>VME-bus</td>
<td>107</td>
</tr>
<tr>
<td>Voronoi space</td>
<td>67</td>
</tr>
<tr>
<td>Wall-following</td>
<td>53</td>
</tr>
<tr>
<td>Whiskers</td>
<td>28</td>
</tr>
<tr>
<td>World modelling</td>
<td>31</td>
</tr>
</tbody>
</table>